

Introduction

> Motivation:

- Detection of Alzheimer's disease (AD) is crucial for timely intervention to slow down disease progression
- •Speech offers non-intrusive, accessible and affordable means for detecting AD through automatic analysis of selected acoustic and linguistic features

•Most existing AD detection methods are based on manual transcripts [Balagopalan et al. 2020, Sarawgi et al. 2020, Yuan et al. 2020], and most acoustic feature-based methods need to be improved [Luz et al. 2020]

Current work: Presents a comparative study of selected features and classifiers for AD detection and highlights the use of automatically transcribed speech with AT-LSTM for improving detection

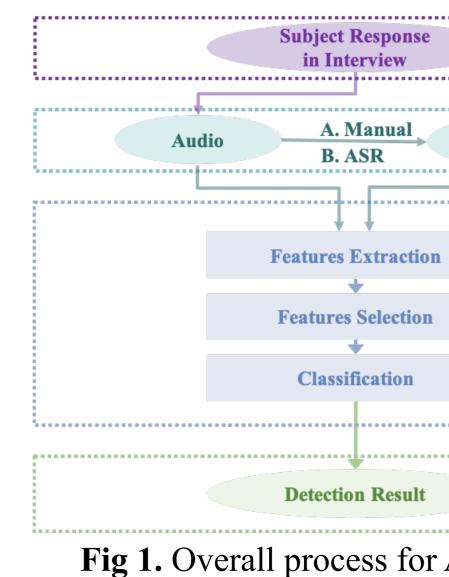
Approach

>**Overview:**

- Input: speech audio and manual/automatic text
- Feature extraction
- Feature selection
- Classification

Dataset: ADReSS Corpus [Luz et al. 2020].

- 156 speech samples and associated transcripts from AD and non-AD participants
- Divided into balanced training and testing subsets



		AD	non-AD
Train	Male	24	24
Train	Female	30	30
Teat	Male	11	11
Test	Female	13	13
Tab 1	. Compositio	on of ADRe	SS dataset.

Benchmark features:

- •ComParE [Weninger et al. 2013], which are low-level descriptors with temporal and voicing related features
- •Linguistics [Snyder et al. 2018], which are linguistic measures, including POS, type-token ratio, etc.

A Comparative Study of Acoustic and Linguistic Features Classification for Alzheimer's Disease Detection Jinchao Li¹, Jianwei Yu¹, Zi Ye¹, Simon Wong¹, Manwai Mak², Brian Mak³, Xunying Liu¹, Helen Meng¹ ¹The Chinese University of Hong Kong, ²The Hong Kong Polytechnic University, ³The Hong Kong University of Science and Technology

Approach

	<u>CORPORA</u>
Text	INPUT
<u>DETECTI</u>	<u>ON SYSTEM</u>
	<u>OUTPUT</u>
AD dete	ection.

Features Selection:

Pearson's Correlation Test (threshold of 0.25).

>Added in current work:

- •X-vector [Snyder et al. 2017], which are Time Delay Neural Network (TDNN) embeddings for speaker verification
- •TF-IDF [Ramos et al. 2003], which is textual vector representation.
- •BERT [Devlin et al. 2018], which are bidirectional encoder representations from transformer.

Dimensionality Reduction:

•Principal Components Analysis with *n* components = min(feature dim, data size)

Classifiers:

- Linear Discriminant Analysis (LDA)
- Support Vector Machine (SVM) with soft margin and linear kernel
- Attention-based Long Short-Term
- Memory Recurrent Neural Network
- (AT-LSTM) [Wang et al. 2018] cross-
- entropy loss and L-2 regularization

Experimental Setup

>ASR [Ye et al. 2021]

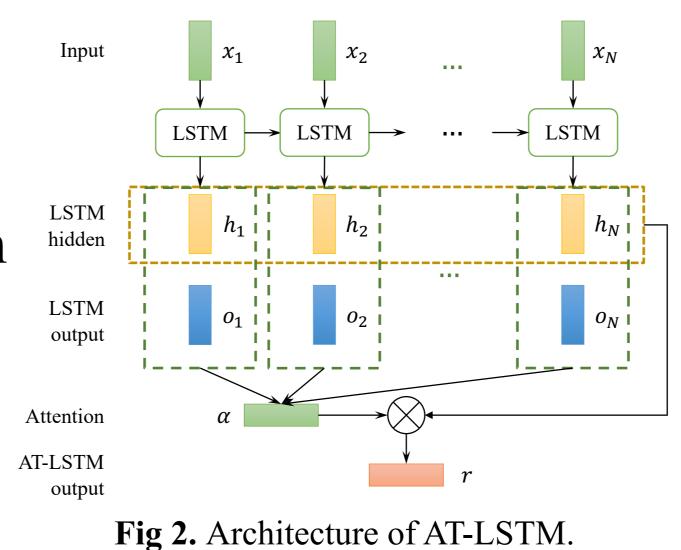
•Two ASR systems with respectively participant WER 44.89% and 33.17% on the ADReSS test subset.

Training for AT-LSTM

•Adam optimizer with 0.0005 learning rate and 0.01 weight decay. •Dropout rate of 0.2, early stopping of 16 epochs, batch size of 32.

Evaluation

•The detection systems are evaluated by 10-fold cross-validation (CV) on the train set and evaluated on test set. Metrics of accuracy(ACC), precision (PRE), recall (REC), F1 and Area Under Curve (AUC) scores.



Model	Feature	ACC	PRE	REC	F1	AUC
LDA [13]	ComParE	0.56/0.62	0.57 / 0.60	0.52 / 0.75	0.54 / 0.67	N/A
LDA [13]	Linguistics	0.77 / 0.75	0.77 / 0.83	0.76 / 0.62	0.77 / 0.71	N/A
SVM [9]	BERT	0.82/0.83	0.84 / 0.81	0.79 / 0.88	0.81 / 0.84	N/A
LDA	ComParE	0.66 / 0.65	0.65 / 0.64	0.62 / 0.62	0.64 / 0.64	0.71/0.6
	X-vector	0.63 / 0.58	0.62 / 0.59	0.66 / 0.54	0.62 / 0.57	0.66 / 0.6
	Linguistics	0.81/0.83	0.86 / 0.94	0.73 / 0.71	0.78 / 0.81	0.90 / 0.9
	TF-IDF	0.76/0.71	0.79 / 0.81	0.73 / 0.54	0.74 / 0.65	0.84 / 0.8
	BERT	0.76/0.79	0.74 / 0.79	0.80 / 0.79	0.76 / 0.79	0.83 / 0.8
	ComParE	0.71/0.58	0.73 / 0.62	0.68 / 0.42	0.68 / 0.50	0.76 / 0.6
SVM	X-vector	0.61 / 0.58	0.62 / 0.60	0.61 / 0.50	0.60 / 0.55	0.62 / 0.6
	Linguistics	0.80/0.83	0.82 / 0.90	0.75 / 0.75	0.76 / 0.82	0.89 / 0. 9
	TF-IDF	0.86 / 0.71	0.91 / 0.73	0.82 / 0.67	0.85 / 0.70	0.93 / 0.8
	BERT	0.75 / 0.88	0.74 / 0.91	0.79 / 0.83	0.75 / 0.87	0.83 / 0.8
AT- LSTM	ComParE	0.80 / 0.64	0.81 / 0.64	0.80 / 0.64	0.79 / 0.64	0.87 / 0.7
	X-vector	0.58 / 0.67	0.58 / 0.66	0.65 / 0.69	0.59 / 0.67	0.65 / 0.7
	Linguistics	0.82/0.81	0.88 / 0.88	0.76 / 0.73	0.79 / 0.79	0.90 / 0.8
	TF-IDF	0.82/0.66	0.84 / 0.67	0.79 / 0.65	0.80 / 0.66	0.87 / 0.7
	BERT	0.80/0.83	0.80 / 0.91	0.80 / 0.74	0.78 / 0.81	0.89 / 0. 9

Tab 2. Results of proposed vs. benchmark models, formatted as CV / Test scores.

System	Feature	ACC	PRE	REC	F1	AUC
Sys. 4	TF-IDF	0.69	0.74	0.58	0.65	0.85
(0.45)	BERT	0.79	0.72	0.96	0.82	0.87
Sys. 10	TF-IDF	0.69	0.74	0.58	0.65	0.82
(0.33)	BERT	0.88	0.82	0.96	0.88	0.92
Manual	TF-IDF	0.71	0.73	0.67	0.70	0.83
	BERT	0.88	0.91	0.83	0.87	0.89

ID 3. Test results of manual vs. ASK-based features.

Discussion & Conclusions

- transcriptions.

> This project is partially supported by the HKSARG Research Grants Council's Theme-based Research Grant Scheme (Project No. T45- 407/19N).

Experimental Results

> Presented a comparative study of different acoustic and linguistic features extracted from transcribed speech for AD detection using different classifiers. >Results reflect viability of using speech for AD detection, extracted linguistic features outperform acoustic features, and feature selection methods are useful for improving the performance.

>Results indicate the feasibility of a fully automatic AD detection from speech based on ASR-derived

>Future work will include applying the system to Cantonese data and improving detection performance by features fusion methods.

Acknowledgement