
Context-aware Multimodal Fusion for Emotion Recognition

Jinchao Li∗1, Shuai Wang2, Yang Chao2, Xunying Liu1, Helen Meng1

1The Chinese University of Hong Kong, Hong Kong, China
2Lightspeed & Quantum Studios, Tencent, Shenzhen, China

1{jcli, xyliu, hmmeng}@se.cuhk.edu.hk, 2{svsamwang, youngchao}@tencent.com

Abstract
Automatic emotion recognition (AER) is an inherently com-
plex multimodal task that aims to automatically determine the
emotional state of a given expression. Recent works have wit-
nessed the benefits of upstream pretrained models in both au-
dio and textual modalities for the AER task. However, efforts
are still needed to effectively integrate features across multi-
ple modalities, devoting due considerations to granularity mis-
match and asynchrony in time steps. In this work, we first val-
idate the effectiveness of the upstream models in a unimodal
setup and empirically find that partial fine-tuning of the pre-
trained model in the feature space can significantly boost perfor-
mance. Moreover, we take the context of the current sentence to
model a more accurate emotional state. Based on the unimodal
setups, we further propose several multimodal fusion methods
to combine high-level features from the audio and text modal-
ities. Experiments are carried out on the IEMOCAP dataset in
a 4-category classification problem and compared with state-
of-the-art methods in recent literature. Results show that the
proposed models gave a superior performance of up to 84.45%
and 80.36% weighted accuracy scores respectively in Session 5
and 5-fold cross-validation settings.
Index Terms: Emotion Recognition, multimodality, transfer
learning, deep learning

1. Introduction
Automatic emotion recognition (AER) aims to determine the
emotional state of a given expression automatically. It plays an
essential role in various applications such as human-computer
interactions and psychological assessments. [1–4]. AER is an
inherently a complex multimodal task, since humans express
and perceive emotions in different ways and across modalities,
such as speech intonation [5, 6], linguistic content [7, 8], facial
expression, etc. [9–11].

With recent advancements in Self-Supervised Learning
(SSL), the emotion representations are shifting from hand-
crafted features, e.g., acoustic pitch and energy [12] or tex-
tual keywords and semantic information [13], to high-level em-
beddings extracted by pre-trained models, e.g. BERT and Hu-
BERT [14, 15]. To further leverage these high-level features,
various network architectures have been explored in the latest
AER tasks [16].

Although these approaches have yielded respectable re-
sults, several key issues remain to be addressed. First, the emo-
tion of an utterance is usually strongly related to the dialog con-
text, yet most utterance-level feature modelling methods have
not captured such information. Second, relying solely on ei-
ther acoustic or linguistic information does not offer sufficient
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robustness in emotion recognition, which leads to increasing at-
tention devoted to the use of multi-modal approaches. The het-
erogeneity across modalities calls for research in multimodal
fusion strategies, including context-dependent fusion [17], con-
textual Long-Short Term Memory (LSTM) [18], co-attentional
fusion [19], score fusion [20], dynamic convolution [21], self-
supervised learning [22], time synchronous and asynchronous
fusion [23], and etc. [24].

This work proposes a context-aware multimodal fusion
framework for the AER task, consisting of a context-aware
SSL-based feature extractor and Transformer-based audio-text
fusion paradigms. We choose the pretrained WavLM [25] and
BERT [26] models to encode the raw audio and text inputs
into frame-level or token-level embeddings, respectively. Then,
the extracted high-level features are calibrated and condensed
with a Squeeze-and-Excitation (S&E) block [27], followed by
a Fully-Connected (FC) Layer and Layer Normalization [28]
which map the two modalities into the same space. After that, a
context-aware Convolution block is adopted to enhance the tar-
get utterance with the context information for the text modality.
We then proposed a novel Multimodal Transformer (MMT) fu-
sion module to integrate the aforementioned features. The key
component of the MMT is the directional pairwise cross-modal
attention [29] based Transformer (CMT), which allows inter-
actions between modalities with distinct time steps. After the
fusion module, the integrated output is then fed into an emotion
classifier.

We conduct the experiments on the Interactive Emotional
Dyadic Motion Capture (IEMOCAP) [30] dataset with a 4-
category classification setup. The proposed models are evalu-
ated with averaged weighted accuracy (WA) and unweighted ac-
curacy (UA) in a leave-one-session-out (5-fold) cross-validation
(CV) setting. Comparison is made with other state-of-the-art
(SOTA) approaches published in recent literature. The rest of
the paper is organized as follows. Section 2 introduces the pro-
posed methods for uni- and multi-modal AER. Section 3 de-
scribes the experimental setups and results. Further analysis of
the proposed methods and comparison with recent literature are
given in Section 4. Finally, Section 5 concludes the paper and
presents possible future research directions.

2. Proposed Approach
The proposed AER framework is illustrated in Figure 1. It is
composed of three modules, a high-level feature extractor, a
cross-modal fusion module (in the multimodal pipelines), and a
classifier. In the following, we will introduce these three mod-
ules in detail.

2.1. High-level feature extractor

The recent success of large pre-trained models motivates this
work to adopt novel, high-level features from self-supervised
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Figure 1: Proposed AER frameworks: (a) unimodal and (b)
multimodal.

learning models [14, 15].
For the audio modality, we adopt WavLM [25], or more pre-

cisely, the WavLM-Large variant. It is trained on 94k hours of
diverse data and contains a convolutional feature encoder and
24 stacked Transformer encoders. To avoid information leak-
age caused by only using the states from the last layer of the
pre-trained model, we adopt the outputs of the feature encoder
and all Transformer encoders as acoustic features. Since the
WavLM model is trained using features of a 20ms stride, we can
obtain a feature map with a shape of 50 × 25 × 1024 (dimen-
sions of time, layer and feature respectively) for each second of
the audio input.

For the text modality, the popular BERT [26] is adopted,
which contains a tokenizer and 12 Transformer encoders. Sim-
ilar to the audio modality, we take the output from all layers,
resulting in a feature map with a size of 1× 13× 768 for each
token of the input sentence.

As described above, the raw features extracted from the
WavLM or BERT for the two modalities are large and redun-
dant, to further condense the information which is helpful to the
AER task, we propose two kinds of feature extractors as illus-
trated in Figure 2.

Figure 2: Feature extractor (a) for audio and (b) for text.

First, we adopt a trainable Squeeze-and-Excitation (S&E)
block [27] to calibrate layer-wise feature responses adaptively,
where the reduction ratio is simply the number of layers in the
corresponding pretrained model here. Then, we project the cali-
brated features into the dimension of 16 to reduce feature redun-
dancy while retaining the intra-class variability. The projector is
an MLP with Layer-Normalization, which can also map audio
and text modalities into the same dimensional space for fusion.

Moreover, considering that the emotion of each utterance is
often related to its context in a spoken dialogue, we follow the
method used in [23] to extract several embeddings from con-
secutive utterances in the textual modality. These embeddings
are further aggregated into a context-aware textual embedding

using a convolutional layer with the stride of 1 and kernel size
of 3.

2.2. Cross-modal fusion

(a) EF (b) LF
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Figure 3: Proposed fusion paradigms: (a) early fusion (EF), (b)
late fusion (LF), (c) CMT, and (d) MMT.

The projected and convoluted features are either fed into
a classifier directly in the unimodal process, or fused first in
the multimodal process. To combine the features from differ-
ent modalities, we designed several fusion strategies, which are
demonstrated in Figure 3.

Early Fusion (EF) denotes the simple concatenation of the
temporal-pooled features from the audio and text feature extrac-
tors, while Late Fusion (LF) inserts an extra Transformer block
to adjust the features further.

Then, we proposed the more elaborate cross-modal Trans-
former (CMT) module, which can be further used in the multi-
modal Transformer (MMT) fusion module. CMT has the same
backbone as the vanilla Transformer [31], but the query and
key-value pairs come from different modalities in the Attention
block.

We consider two modalities, source s and target t, with two
(potentially non-aligned) sequences in each of them denoted as
Xs ∈ RTs×ds and Xt ∈ RTt×dt , respectively. The notations
T(·) and d(·) represent sequence length and feature dimension
respectively. We define the queries as Qt = XtWQt , keys as
Ks = XsWKs and values as Vs = XsWVs , where WQt ∈
Rdt×dk , WKs ∈ Rds×dk and WVs ∈ Rds×dv . Then the latent
adaptation from source s to target t is presented as the cross-
modal attention (CMA):

CMA(s→t) = softmax(
QtK

T
s√

dk
)Vs

= softmax(
XtWQtW

T
Ks

XT
s√

dk
)XsWVs .

(1)

Based on the CMA block, the Cross-modal Transformer en-
ables one modality to receive information from another. We
fuse the audio and text modalities by viewing them as source
modalities in CMT, respectively, namely CMT (audio → text)
and CMT (text → audio). An average time pooling layer fol-
lows the CMT to compress variant time lengths into one. We



also propose a Multimodal Transformer (MMT) by concatenat-
ing the outputs of these two kinds of CMTs. The outputs of
these fusion modules are finally fed into a fully-connected (FC)
layer for emotion classification.

2.3. Classifier

For the multimodal systems, we adopted a simple MLP com-
prised of fully connected (FC) layers as the classifier for the
fused features. For the uni-modal systems, the features obtained
from the feature extractor are directly fed into the final emo-
tion classifier. Besides the simple MLP classifier used in the
multimodal systems, we experimented with a more complicated
Transformer encoder (TE) architecture to validate whether the
performance may be further improved to compare against the
multimodal systems with transformer-based fusion modules.

2.4. Training & Fine-tuning

We adopt a cross-entropy loss function for the outputs from
unimodal or multimodal pipelines. In the training process, we
first freeze the pre-trained WavLM or BERT model and partially
fine-tune them after training convergence. The fine-tuning pro-
cess can be viewed as domain adaptation training. Instead of
unfreezing the whole parameters in WavLM or BERT model,
we only fine-tune the feature extractor part, i.e., CNN encoders
in WavLM and input embeddings in BERT, to adapt the bottom-
level feature space while preventing over-fitting.

3. Experiments
In this section, we introduce the experimental dataset, details
of our experimental settings, and finally, results of the proposed
models and comparisons with other state-of-the-art approaches.

3.1. Dataset

We utilize the IEMOCAP dataset to evaluate our models for the
AER task. The dataset has approximately 12 hours of data and
consists of scripted and improvised dialogues by 10 speakers in
5 sessions. To be consist with previous works, we use 4 emo-
tional classes in this work, including “angry”, “happy” (merged
with “excited”), “sad”, and “neutral”. Thus, there are 5,531
utterances totally (1,103 “angry”, 1,626 “happy”, 1,084 “sad”,
and 1,708 “neutral”).

We evaluate the models with a leave-one-session-out (5-
fold) cross-validation (CV) setting, i.e., four sessions for train-
ing and validation while the remaining one for testing. Since
the dataset is slightly imbalanced among emotion categories,
the averaged weighted accuracy (WA) and unweighted accuracy
(UA, balanced by class weights) are reported as metrics.

3.2. Experimental Setup

In the experiments, audios are clipped into 5 seconds and texts
are clipped into 512 tokens by trimming or padding. To be
consistent with previous work in [23], we trim the voiced 5
seconds of audio and 512 words at the beginning for long ut-
terances, where the emotions are supposed to be expressed in-
tensely. Consider the context effect reported in [23], the number
of textual contexts we select is 9, i.e., 4 utterances before and 4
after the target utterance are selected in sequence.

The systems are trained by using AdamW [32] optimizer
with a learning rate of 10−3 during initial training and 10−5

during fine-tuning, along with a weight decay of 10−3. A
dropout layer (0.5) between every two modules is used for reg-

ularization throughout our training. The batch size for training
is 32. Moreover, we randomly select one speaker as a devel-
opment set and monitor its loss for fine-tuning and early stop-
ping. If the loss has not decreased for 5 epochs, the fine-tuning
process starts; if the loss has not decreased for 10 epochs, the
training stops. The last model is selected and then evaluated.

3.3. Results

We present the results with both unimodal and multimodal
pipelines in Table 1.

Sys. Model Modality WA(%) UA(%)

1 WavLM+FC❄ A 66.15 65.35
2 WavLM+FC☼ A 66.70 66.71
3 WavLM+TE❄ A 63.51 64.67
4 WavLM+TE☼ A 67.99 68.24

5 BERT+FC❄ T 74.33 76.57
6 BERT+FC☼ T 77.67 78.76
7 BERT+TE❄ T 74.55 76.41
8 BERT+TE☼ T 76.09 76.57

9 CMT(A→T )
❄ A + T 67.76 69.37

10 CMT(A→T )
☼ A + T 68.07 67.93

11 CMT(T→A)
❄ A + T 74.98 76.85

12 CMT(T→A)
☼ A + T 77.75 78.60

13 EF (1 ⊕ 5) ❄ A + T 77.61 77.85
14 EF (2 ⊕ 6) ☼ A + T 79.80 80.65
15 LF (3 ⊕ 7) ❄ A + T 79.91 81.88
16 LF (4 ⊕ 8) ☼ A + T 79.91 81.15
17 MMT (9 ⊕ 11) ❄ A + T 78.58 80.72
18 MMT (10 ⊕ 12) ☼ A + T 80.36 81.70

Table 1: 5-fold CV mean results of unimodal and multimodal
systems on IEMOCAP dataset. “A” and “T” refer to audio and
text modalities respectively. “a ⊕ b” means the system can be
viewed as a joint of system a and system b.
❄: frozen, ☼: finetuned.

3.3.1. Unimodal Results

As shown in Table 1, the textual modality (Sys. 5-8) outper-
forms the audio modality (Sys. 1-4) by a large margin on the
IEMOCAP dataset. This fact aligns with the observations in
prior work [33]. We can also find that the fine-tuned features
generally outperform frozen features.

3.3.2. Multimodal Results

Table 1 also shows the effectiveness of the proposed fusion
models. First, we consider the performance of Crossmodal
Transformers (Sys. 9-12). It shows that CMT(T→A) outper-
forms CMT(A→T ), which also implies the superiority of the
textual modality, as seen in the unimodal results. Then, we
compare the Cross-modal Transformers with unimodal systems
(Sys. 1-8) and find that CMT(T→A) slightly improves over the
textual performance (Sys. 11-12 v.s. Sys. 5-8). Finally, we
consider the performance of the fusion of unimodal MLPs (Sys.
13-14), vanilla Transformers (Sys. 15-16), and Cross-modal
Transformers (Sys. 17-18). We find that the fusion of CMT
models is best among other systems, implying that the Cross-
modal Transformer-based interaction benefits the AER task.



4. Discussion
4.1. Comparison with previous literature

In Table. 2, we compare the proposed models with existing
state-of-the-art systems published on the IEMOCAP dataset us-
ing audio and textual modalities. The state-of-the-art fusion
methods listed here including score fusion [20], Co-Attentional
Fusion [19], and time-synchronous and asynchronous concate-
nation [23].

Modality Test setting WA(%) UA(%)

A + T❄ [23] Session 5 83.08 83.22
A + T❄ (ours) Session 5 78.32 80.56
A + T☼ (ours) Session 5 84.45 84.39

A + T☼ [19] 5-fold CV - 75.46
A + T☼ [20] 5-fold CV 73.5 73.0
A + T❄ [23] 5-fold CV 77.57 78.41
A + T❄ (ours) 5-fold CV 79.91 81.88
A + T☼ (ours) 5-fold CV 80.36 81.70

Table 2: Comparative results of the proposed systems with base-
line state-of-the-art approaches on IEMOCAP dataset using au-
dio (“A”) and text (“T”) modalities.
❄: frozen, ☼: finetuned.

We also report results on a single Session 5 subset com-
parable to previous literature. Here, we do not include other
works that do not focus on 4-category classification, or are sim-
ply tested with a random CV setting without considering the
speaker overlap or data leakage.

As shown in Table 2, the proposed models achieve best per-
formance, reaching 84.45% WA (84.39% UA) on Session 5,
and 80.36% WA (81.70% UA) on 5-fold CV for the IEMOCAP
dataset.

4.2. Analysis

We conducted several studies on Session 5 of the IEMOCAP
dataset to analyze the performance of the proposed systems.

4.2.1. Frozen v.s. Fine-tuned

From both unimodal and multimodal results in Table 1, we can
find that the fine-tuned systems generally outperform the frozen
systems. The confusion matrices in Figure 4 also shows the
improvement from the frozen (Figure 4d) to fine-tuned (Figure
4b) state of the same model.

4.2.2. Unimodal v.s. Multimodal

From the results in Table 1, we can also find that the multimodal
systems generally outperform the unimodal systems. The con-
fusion matrices of uni- and multimodal systems are illustrated
in Figure 4, where Sys. 4, Sys. 8, and Sys. 18 represent audio-
only, text-only and multimodal systems respectively. Several
interesting observations were found in Figure 4.

First, the audio model (Figure 4a) performs well on “neu-
tral” and “angry” emotions, but poorly on “happy” and “sad”
emotions, most of which are falsely predicted as “neutral”. An
intuitive reason is that speech intonations of “neutral” are more
distinguishable with “angry”, but may confuse with “happy”
and “sad” emotions. Second, the textual model (Figure 4b) per-
forms well on “happy”, “angry” and “sad”, but poorly on “neu-
tral”. This is similar to the multimodal system (Figure 4c). A

(a) A☼ (b) T☼

(c) A + T☼ (d) T❄

Figure 4: The normalized confusion matrices of unimodal and
multimodal systems evaluated on Session 5 of IEMOCAP. “A”
and “T” refer to audio and text modalities respectively. “neu”,
“hap” and “ang” refer to “neutral”, “happy” and “angry”
respectively.
❄: frozen, ☼: finetuned.

possible reason is that there are some emotional keywords in
a “neutral” sentence, e.g., “Why does that bother you?”. The
emotional words appearing in a “neutral” sentence may bring
confusion to the model for the textual modality. Finally, we
can observe that the multimodal system (Figure 4c) achieves
the best performance and especially, surpass the accuracy of ev-
ery emotion class compared with the text-only model (Fig. 4b),
which reflects the synergetic attributes among the audio and text
modalities.

5. Conclusion

In this paper, we propose a context-aware feature extractor and
several multimodal fusion methods for the AER task. The SSL
embeddings from context utterances with further bottom-level
fine-tuning show the power of emotional representations. Ex-
periments are carried out on IEMOCAP. The proposed mul-
timodal Transformer-based method achieves 80.36% WA and
81.70% UA under the 5-fold CV setting, 84.35% WA and
84.39% UA on the Session 5, which shows the attainment of
state-of-the-art performance on this dataset. In future work, we
will investigate the robustness and generalization of the AER
task in the cross-lingual or few-shot speaker adaptation settings.
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