

香港中文大學 The Chinese University of Hong Kong

Microsoft **Research Asia**

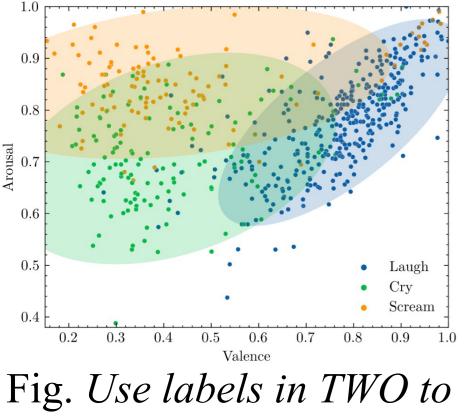
Introduction

>ACII AVB 2022 Challenge tasks:

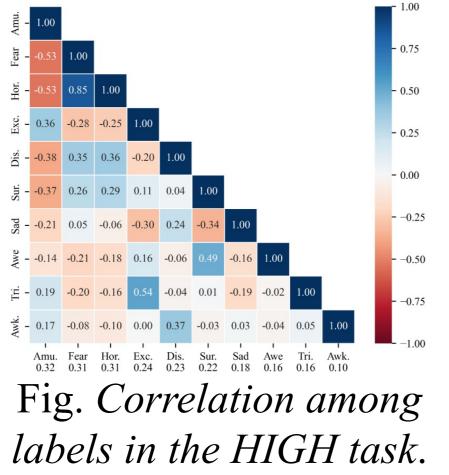
•TWO (regression): predict values of arousal and valence

•TYPE (classification): classify the type of VB from 8 classes (Gasp, Laugh, Cry, Scream, Grunt, Groan, Pant, Other)

•HIGH (regression): predict the intensity of 10 emotions


•CULTURE (regression): predict the intensity of 40 emotions


> Motivation:


•Vocal bursts (VB) play a crucial role in conveying emotion

•Emotions are complex and have various labeling methods

•Modeling inner and cross relationships among multiple emotional labels help understanding the emotion better

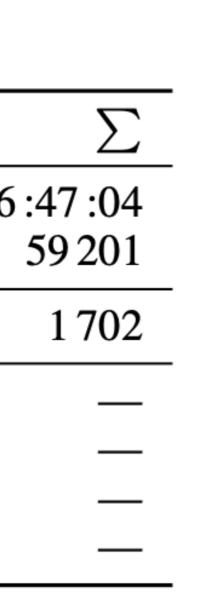
> Objective & Contributions:

•Propose a hierarchical multitask model with chain regressors to explicitly learn the label dependency

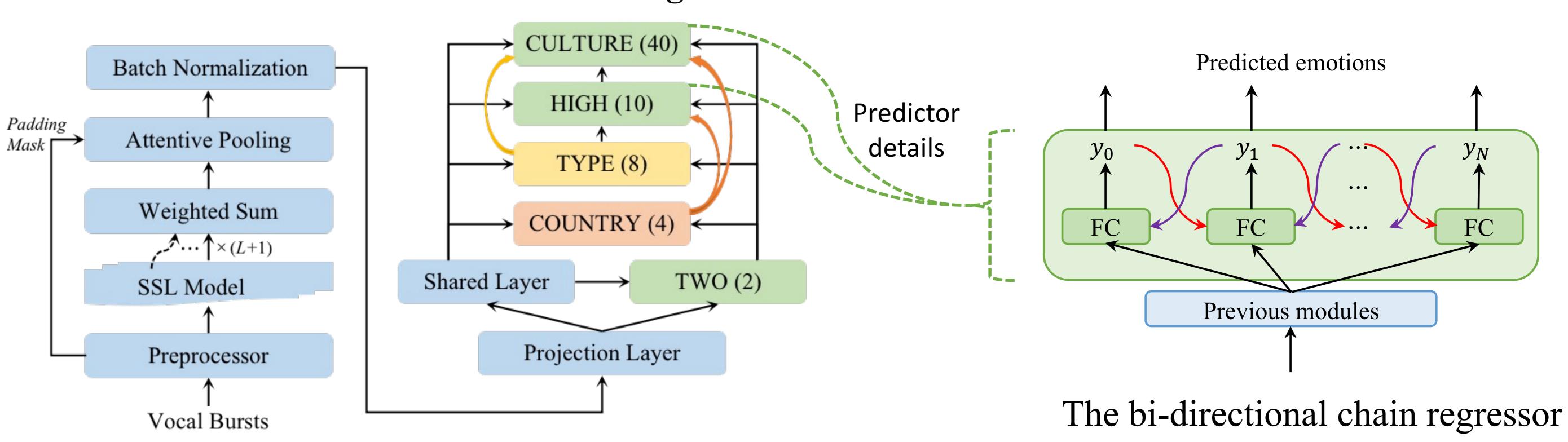
Experimental Setup > The HUME-VB competition data:

	Train	Val.	Test	
HH: MM: SS No.	12 :19 :06 19 990	12 :05 :45 19 396	12:22:12 19 815	36
Speakers	571	568	563	
USA	206	206		
China	79	76		
South Africa	244	244		
Venezuela	42	42		

>Loss function & training details:


Cross-entropy loss for TYPE, COUNTRY; CCC loss (1 – CCC(y, y') for TWO, HIGH, CULTURE; AdamW optimizer

Evaluation Protocols:


Concordance correlation coefficient (CCC):

$$CCC(x_i, y_i) = \frac{1}{N} \sum \frac{2 * cov(x_i, y_i)}{\sigma_{x_i}^2 + \sigma_{y_i}^2 + (\mu_{x_i} + \mu_{y_i})^2}$$

A Hierarchical Regression Chain Framework for Affective Vocal Burst Recognition Jinchao Li¹, Xixin Wu¹, Kaitao Song², Dongsheng Li², Xunying Liu¹, Helen Meng¹ ¹The Chinese University of Hong Kong, Hong Kong SAR, China; ²Microsoft Research Asia, Shanghai, China

Approach > Overview of hierarchical multitask learning framework:

>Model details:

- SSL Model: Wav2vec 2.0-Large XLSR

Results on different tasks

Approach		TWO		HIGH		TURE	Approach	Averaged CCC
Approach	Val.	Test	Val.	Test	Val.	Test	ComParE [1]	.5154
ComParE [1]	.4942	.4986	.5154	.5214	.3867	.3887	eGeMAPS [2]	.4484
eGeMAPS [2]	.4114	.4143	.4484	.4496	.3229	.3214	END2YOU [3]	.5638
END2YOU [3]	.4988	.5084	.5638	.5686	.4359	.4401	Ours	.7351
Ours	.6966	.6854	.7351	.7237	.6464	.6017	- Finetune	.6103
	1						- Regression Chain	.6513
							- Finetune & Regression Chain	.5540

[1] B.Schuller'16, [2] F.Eyben'15, [3] P.Tzirakis'18

>Effectively extract features from pretrained models with finetuning and layer-wise, temporal aggregation >Modeling multi-label dependency by hierarchical multitask learning >Modeling intra-label dependency by Bi-directional chain regressor >Winner on the TWO and CULTURE tasks, Second on the HIGH task

>Multitask learn multilabel dependency: lower-dimensional to higher-dimensional labels **Bi-chain regressor learn inner-label dependency:** High to low correlation + low to high correlation

Projector layer, shared layer: 128, 64-dimensional fully-connected layers •Classifiers: Fully-connected layers for TWO, TYPE, COUNTRY, Bi-Chain Regressors for HIGH, CULTURE

Results

>Ablation study

Conclusion

Poster #: 6131

